Ứng Dụng Tích Phân
Tìm Diện Tích Giới Hạn Bởi Đường Cong, Trục Và Các Đường
Thẳng
Phần ứng dụng của tích phân để tìm
diện tích hình phẳng trên tọa độ hai chiều đã được bác học Isaac Newton
(1642-1727) khai sáng dựa trên nền triết học hình học do bác học René Descartes
(1596-1650) khởi xướng hệ tọa độ, cũng là cha đẻ ngành tân toán học được dùng
cho đến ngày nay (1*). Trong phần này ta tìm hiểu khái niệm định nghĩa
tích phân và một số ví dụ về lấy tích phân. Sau đó sẽ dùng tiện ích GraphFunc trực tuyến để kiểm chứng
kết quả của các ví dụ đã được khảo sát.
Cho hàm số f(x) liên tục trên đoạn [a, b] thì diện tích (S) của hình phẳng được giới hạn bởi hàm số f(x), trục hoành (y=0) và các đường thẳng đứng x = a, x = b (xem hình 0) được tính bằng công thức:
(chú ý nếu f(x) dương trên một
đoạn nào đó thì biểu thức trên là cộng trên đoạn đó; nếu f(x) âm trong một đoạn
nào đó thì diện tích sẽ là âm trên đoạn đó).
Hình 0
Ta cần hiểu một chút khái niệm về tích
phân (2*) trong Giải Tích. Phương pháp tìm diện hình tích phẳng được giới
hạn bởi hàm số f(x) và các đường khác (như trục x hay y, các đường thẳng đứng x
hay ngang y hoặc các đường cong khác) là chia diện tích hình phẳng đó thành
những hình chữ nhật dọc nhỏ có chiều rộng là và chiều
dài là y = f(x) (3*) – Xem hình 0. Sau đó cộng tất cả diện tích của các
hình chữ nhật nhỏ đó lại với nhau ta đươc diện tích của hình phẳng cần
tính. Nhưng diện tích này vẫn chưa chính xác nếu giá trị của
>0.
Sự chính xác sẽ hành hình khi ta cho giới hạn
tiến về
0. Có thể nói rằng mấu chốt của tích phân hay đạo hàm đều dựa trên khái
niệm giới hạn mà hình thành. Điều đó có ý nghĩa rằng mọi đạo hàm hay tích
phân có được đều do delta x luôn bằng không. Nếu ta nói delta bằng không
thì mọi số khi chia cho nó bị vô nghĩa (nhắc lại ký hiệu đạo hàm của y =
dy/dx), do đó, người ta hình thành thuật ngữ toán học gọi là limit để biểu
tượng của sự giới hạn tới gần điểm 0 để tránh trường hợp 0/0 (không bằng 1 và
không tồn tại) cho hợp với đại số. Một khi mà
tiến tới
0, thì người ta gán ký hiệu
thành
dx. Vậy theo công thức (I) ở trên, ta hiểu rằng diện tích của nó được
tính chính xác một cách tuyệt đối cho bất kỳ hàm số nào thoả mãn định
nghĩa. Khái niệm quan trọng nhất trong giải tích về tích phân khi áp dụng
phần tính diện tích hình phẳng là hãy chia nó nhỏ theo một mô hình nào đó làm
chuẩn sau đó tích (*4) (hay cộng) chúng lại với nhau bằng cách dựa vào mô hình
và ký hiệu do chính mình đặt ra.
Sau đây ta xét một số ví dụ lấy
tích phân của một số hàm số đơn giản cho tới khó và sau đó dùng GraphFunc để kiểm lại kết quả.
Thí Dụ 1. Tính
diện tích được giới hạn bởi hàm số , x = 0,
x = 4 và trục hoành x.
Ta dùng GraphFunc kiểm tra lại đáp án:
1. Vào trang website http://viet.seriesmathstudy.com
để khởi động GraphFunc applet vẽ
đồ thị hàm số trực tuyến. Sau đó
gõ biểu thức (x^2)/6 vào ô trống.
Xem Hình 1 có đánh dấu số thứ tự cho mỗi bước.
2. Bấm nút Vẽ Hàm! .
3. Điền các giá trị 0 và 4 vào chỗ nhãn hiệu Từ và Tới, đoạn bấm nút Diện Tích để tính diện tích.
Kết quả tính được biểu thị bằng khoanh tròn đỏ 3,555555555…
Hình 1: Diện tích S
được tô đậm dưới đường cong có giá trị gần đúng là 3,555555555555123.
Ta so sánh diện tích được tính
chính xác bởi công thức (có giá trị là 32/9) với diện tích gần đúng do GraphFunc tính thì có sự sai biệt
rất nhỏ.
Thí Dụ 2. Tính diện tích được giới hạn bởi hàm số , x = 0,
x = 5 và trục hoành (y=0).
Dùng GraphFunc để kiểm tra đáp án: Ta
theo các bước chỉ dẫn trong Thí Dụ 1 và kết quả được minh hoạ theo Hình 2.
Hình 2: Diện tích S được tô đậm dưới đường cong có giá trị gần đúng là 12,223075761498318
Ta so sánh kết quả chính xác do
lấy tích phân trực tiếp và kết quả do GraphFunc
tính có sự khác biệt nhỏ. Sự khác biệt này là do giá trịmà GraphFunc thực hiện bằng
0.01. Nếu giá trị delta này càng nhỏ thì kết quả sự chính xác càng lớn
đến nhiều số thập phân (5*).
Thí Dụ 3. Sau đây ta
xét diện tích của một hàm số mà tích phân của nó ở dạng không chuẩn được gíới
hạn bởi,
và trục
hoành (y=0). Với điều kiện đã cho, diện tích được thành lập như sau:
Với biểu thức trên, ta không thể nào dùng cách lấy tích
phân theo thông thường để giải. Tích phân này thoát thai từ phương trình
Gamma. Để thực hiện cách giải, ta nên bình phương hai vế ở trên sau đó
chuyển chúng về dạng theo biến số tọa độ cực. Để chuyển theo dạng cực, ta
xét tính chất đối xứng của nó và ta viết một vế củathành
(đây là
điểm mấu chốt để giải bài tích phân loại này), do đó, biểu thức trên có thể
viết lại (6*):
. (A)
Từ đây ta thấy xuất hiệnlà biểu
tượng của đường tròn. Như vậy ta hãy chia mặt phẳng mà hàm số ở trên bao
phủ trên đồ thị theo các vòng tròn đồng tâm tại gốc 0 có bán kính r và khoảng
cách giữa vòng tròn kề nhau là dr. Như vậy diện tích của mỗi vòng tròn là
và ta chỉ
xét một phần tư của mặt phẳng (7*).
Biểu thức trên có thể viết lại theo toạ độ trục như sau:
.
Ta đặt , và thu
được kết quả như sau:
hay
.
Vậy, diện tích (*8) tìm được là:
Bây giờ ta dùng GraphFunc để vẽ hình và kiểm chứng
diện tích vừa tìm được ở trên. Mặc dù điều kiện bài toán cho giá trị , ta chỉ
xét ở trong phạm vi x = 0 tới x = 5 như được minh hoạ trong Hình 3. Bạn có
thể sửa giá trị của Từ và Tới trong đoạn [0; 15] và sẽ thấy sự chính xác của nó thêm vài
số thập phân.
Hình 3: Diện tích được
tính từ x = 0 tới x = 5 có giá trị gần đúng là 0,8862269254513975.
Sau cùng bạn có thể thấy rằng GraphFunc có chức năng giúp bạn tìm diện tích gần đúng của bất kỳ hàm nào mà liên tục trên đoạn mà bạn muốn tính diện tích.
(1*) René Descartes là bác học
tinh thông thần học, triết học, hình học và cũng là người sáng lập ra ngành tân
toán học hiện đại. Descartes sáng lập ra hệ thống tọa độ là nền tảng toán
học mà bác học Newton - vừa là nhà toán học, triết học, và vật lý học – phát
huy tiếp để phát minh ra phương pháp giải tích như lấy đạo hàm, tích phân,
trong mặt phẳng hai chiều và thể tích trong không gian ba chiều và khám phá ra
nhiều các phương trình vật lý quan trọng khác. Công việc của bác học Newton đã
để lại kho tàng vô tiền khoáng hậu trong việc ứng dụng cho các ngành khoa học
hiện đại khác.
(2*) Tích phân: Trong tiếng Việt, người ta hay dùng từ ngữ đạo hàm và tích phân trong sách vở trong phần “định nghĩa” nhưng vẫn ít thấy ai giải thích ý nghĩa đích thực của nhóm từ này mặc dù từ ngữ và ký hiệu của nó đã quá quen thuộc. Thật công tâm mà nói hiểu mấy chữ này theo ý nghĩa đích thực thì không phải dễ và mấy ai đã hiểu rõ ý nghĩa của nó khi còn đang ngồi dưới mái trường trung học! Phần từ ngữ này hy vọng sẽ có người giảng thêm ý nghĩa của nó trong các sách giáo khoa sao cho người học hình dung được ý nghĩa đích thực của nó. Hiểu ý niệm và mục đích của nó mới là mấu chốt để phát huy và có sức sáng tạo sau này, còn ký hiệu và mô hình do con người tự đặt ra theo lối suy nghĩ riêng của họ với mục đích là hiểu “sự vật” qua các ký hiệu hay phương trình dựa trên các ký hiệu đó. Dĩ nhiên ngôn ngữ và ký hiệu thì rất quan trọng. Nếu chúng mô tả sát sự vật thì khi truyền đạt tri thức về điều cần khảo sát sẽ rõ ràng. Và nếu ta hiểu đích thực về bản tính tự nhiên của điều đang khảo sát thì khi truyền đạt tri thức sẽ ở mức độ rõ ràng hơn nữa.
(3*) Hoặc chia nhỏ hình phẳng thành các hình chữ nhật nhỏ nằm ngang. Ngoài ra, chiều dài của hình chữ nhật nhỏ đứng theo trục tung được xác định bởi y = f(x) và giá trị của x trong trường hợp này là nằm chính giữa của đoạn nhỏ delta x. Hình chữ nhật nhỏ nằm ngang hay nằm dọc này đúng ra chúng là những hình thang cong trong trường hợp giá trị delta x được chọn tương đối lớn..
(4*) Tích: hiểu nghĩa tích lũy hay tích tiểu thành đại; chứ không hiểu tích là nhân. Sau khi ta phân chia một mặt phẳng thành nhiều hình chữ nhật nhỏ, ta cần tích chúng lại hay cộng các hình chữ nhật đó lại. Đây chính là khái niệm tích phân. Sau đây là một ví dụ khác để hiểu khái niệm của tích phân. Giả sử bạn muốn tính diện tích “tương đối” của một miếng đất nào đó mà miếng đất đó không có hình thù theo một hình học nào hết. Theo bạn thì bạn làm thế nào để tính diện tích miếng đất đó theo đơn vị của chính bạn? Có thể bạn cũng nghĩ rằng ta cần tạo ra một miếng hình chữ nhật mẫu có nhiều dài và chiều rộng tương đối nhỏ giống như viên gạch ngói chẳng hạn. Và bạn giả sử những viên gạch ngói này giống nhau về diện tích. Sau đó bạn xếp các viên gạch đó lại với nhau sao cho chúng che kín bề mặt của miếng đất mà ta cần tính. Sau cùng bạn cộng tất cảc viên gạch đó lại với nhau, bạn sẽ tính được diện tích khá tương đối về miếng đất đó dựa theo đơn vị diện tích của các viên gạch mà bạn đã đặt lên trên miếng đất. Nếu bạn hình dung tiếp, bạn thấy diện tích của miếng đất đó muốn chính xác hơn bạn cần phải chia viên gạch đó nhỏ hơn một chút nữa (tức là bạn chọn một mẫu gạch có diện tích nhỏ hơn nữa) để cho nó có thể phủ kín miếng đất hơn. Và nếu bạn càng chia nhỏ diện tích của viên gạch thêm lần nữa và cứ thế, sự kín mà các viên gạch bao trùm miếng đất càng lớn; nó cũng đồng nghĩa diện tích của miếng đất dựa vào số diện tích của các viên gạch đã trải bao phủ trên nó càng chính xác. Trong toán học, người ta có thể chia nó nhỏ tới mức bằng 0, nhưng phải biết trước đường cong hay hàm biểu diễn của miếng đất đó. Vậy bạn có thể phát biểu: Tích phân là quá trình phân chia rồi tổng hợp lại. Bạn cũng áp dụng khái niệm này vào hệ tọa độ ba chiều. Thay vì xét diện tích, ta xét thể tích của viên gạch!
(5*) Chú ý cách dùng dấu chấm trong các con số thập phân. GraphFunc hay các nước Tây phương dùng dấu chấm để biểu diễn số thập phân, còn Việt Nam hay các nước Âu châu thì dùng dấu phẩy.
(6*) Nếu xét từng bước giải thì biểu thức (A) không còn đúng theo ý nghĩa của phép đại số, nhưng nó vẫn đúng theo phép suy luận. Ngoài ra, bạn đọc có thể tham khảo thêm về phương pháp Residue để giải một số tích phân đặc biệt.
(7*) Bạn đọc coi lại hình vẽ của hàm số và điều kiện bài toán thì diện tích cần tính nằm trong phần thứ nhất trên mặt phẳng tọa độ x-y. Do đó, ta chỉ xét diện tích bao phủ một phần tư bề mặt của đường tròn.
(8*) Công thức tổng quát là , trong
đó a là số thực.
Mọi ý kiến xây dựng và bài vở xin liên lạc dothi@seriesmathstudy.com.
T.V.
Ngày 12
tháng 11 năm 2006
Nhấn vào
đuờng dẫn này để tải bài này xuống máy bạn (chú ý bài pdf này được
trình bày theo GraphFunc có phiên bản tiếng anh cũ)
Copyright
2005- http://toantructuyen.seriesmathstudy.com. All rights
reserved. Contact us.
Ghi rõ nguồn "http://toantructuyen.seriesmathstudy.com" khi bạn đăng
lại thông tin từ website này.